If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(^4+16)D=9
We move all terms to the left:
(^4+16)D-(9)=0
We multiply parentheses
D^2+16D-9=0
a = 1; b = 16; c = -9;
Δ = b2-4ac
Δ = 162-4·1·(-9)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{73}}{2*1}=\frac{-16-2\sqrt{73}}{2} $$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{73}}{2*1}=\frac{-16+2\sqrt{73}}{2} $
| 0.3x-4=0.6/0.5 | | 4x-10+3x-5=180 | | 7(x+4)=2(5x-4) | | 4(x-3)=4(3x+1) | | 3200+100h=110 | | 7-5x=-3/4 | | 7(-x-10)=16 | | 2x+10=59 | | 4.97(2.27w-11.11)=5.33 | | 4.97(2.27w-11.11)=5.3/ | | 4-(3/2x)=7 | | 2/3(3x+9)-3x=-12 | | (13-x)6=42 | | 40-10*2=2y | | 4.9x^2-15x+30=0 | | 4.9x^2+15x+30=0 | | 11x-x*x-36=0 | | .286x+350=x | | -0.65x+7.7=-4 | | 2y2+5y=4y+5y=9y | | 2y-4=-28 | | 9(2x+5)=117 | | 4a+20=9a | | 0=-0.11t^2+4t+7.2 | | -5(9-8x)-(1-x)=4(x-8) | | -4(5-8x)-(1-x)=4(x-4) | | x^2-10x=38 | | P-8=-1/4(x-48) | | 5.1g+6=3.1g+16 | | -0.1x-0.9=-0.5 | | 0.6y-0.9=-0.8 | | 0.6y-0.9=-0.88 |